關鍵詞:非球曲面;超精密加工;微調機構;金剛石砂輪
Abstract
The aspheric optical parts can get good image quality, good optical system correction of various aberrations, to improve the image quality, and improve the system ability to identify it to one or several non-spherical spherical optical parts unparalleledparts instead of a number of spherical parts, thus simplifying the instrument structure, reduce costs and reduce instrument weight. It’s widely used in many realms, such as national defense, machine chemical and aviation. It’s very useful to develop the grinding theory and important practical significance to study the high precision grinding methods about the optical glass aspheric surface parts.
This article discussed in the ultra-precision grinder, the CNC operation program,and the aspheric surface optics parts’ grinding craft. The center height micro-adjusting mechanism and the drive system. In the process of the research, we analysis it detailed that the main factor influence the process precision of the parts, and make something to solve it, especially for the precision grinding equipments, and analysis it simplify for the precision machine tool for aspheric surface optics parts and the servo-control system and the other technology.
Key words: the aspheric surface; ultra-precision machining; the micro-adjusting mechanism; diamond wheel
目 錄
摘要 I
目錄 III
Capter 1 Introduction 1
1.1 The meaning of the processing of aspheric surface 1
1.2 The introuduction of the aspheric surface’s research 1
1.2.1 Definition of aspheric surface 1
1.2.2 Application of aspheric surface 2
1.2.3 The development of aspheric surface in recent years 2
1.2.4 Aspheric pricesssing trends and research directions 4
1.3 The parts’ material and the processing method 4
1.3.1 Computer-controlled single-point diamond technology(SPDT) 5
1.3.2 Ultra-precision grinding technology 5
1.3.3 Computer Controlled Optical Surfacing(CCOS) 5
1.3.4 Optical glass compression molding technology 6
1.3.5Optical plastic molding technology 6
1.3.6 Other processing technology 6
1.4Aspheric surface precision grinding theory 6
1.4.1 Trace processing theory 8
1.4.2 Ductile-regime grinding of brittle materials 8
Capter 2 Ultra-precision aspheric processing alternatives and error analysis 10
2.1 Ultra precision aspherical surface grinding machine layout 10
2.1.1 Air spindle system 10
2.1.2 Servo feed system 11
2.1.3 Micro-displacement measurement system 11
2.1.4 Center high tuning system 11
2.1.5 Numerical control system 11
2.2 Aspherical surface grinding scheme 12
2.2.1 Processing part of the technical parameters 13
2.2.2 Aspherical surface grinding scheme 13
2.3 Processing error analysis 14
2.3.1 Center high fine-tuning mechanism on the impact of cutting accuracy 15
2.3.2 In the X axis on the wheel on the impact of cutting accuracy 17
2.3.3 Wheel radius error on the part of machining precision 18
2.3.4 Both and on the part 19
Capter3 Aspheric tooling design 21
3.1 Ultra-precision machining technology 21
3.1.1 Ultra-precision spindle 21
3.1.2 Ultra-precision guide 21
3.1.3 Drive system 22
3.1.4 Ultra-precision cutter 22
3.1.5 Other technology 23
3.2 Transmission System Designing 23
3.2.1 Grinding parameters 23
3.2.2 The overall design of the Rails 24
3.2.3 Calculation of transmission parameters 25
3.3 Grinding systems design 25
3.3.1 System architecture design 26
3.3.1 Center high micro-adjusting mechanism design 27
3.3.2 Wheel spindle design 28
Conclusion 31
Thanks 32
References 33 ...